Chapter 10
Surveillance for OQutbreak Detection
in Livestock-Trade Networks

Frederik Schirdewahn, Vittoria Colizza, Hartmut H. K. Lentz,
Andreas Koher, Vitaly Belik, and Philipp Hovel

Abstract We analyze an empirical, temporal network of livestock trade and present
numerical results of epidemiological dynamics. The considered network is the
backbone of the pig trade in Germany, which forms a major route of disease
spreading between agricultural premises. The network is comprised of farms that
are connected by a link, if animals are traded between them. We propose a concept
for epidemic surveillance, which is generally performed on a subset of the system
due to limited resources. The goal is to identify agricultural holdings that are more
likely to be infected during the early phase of an epidemic outbreak. These farms,
which we call sentinels, are excellent candidates to monitor the whole network. To
identify potential sentinel nodes, we determine most probable transmission routes
by calculating functional clusters. These clusters are formed by nodes that — chosen
as seed for an outbreak — have similar invasion paths. We find that it is indeed
possible to group the German pig-trade network in such clusters. Furthermore, we
select sentinels by choosing nodes out of every cluster. We argue that any epidemic
outbreak can be reliably detected at an early stage by monitoring a small number
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of those sentinels. Considering a susceptible-infected-recovered model, we show
that an outbreak can be detected with only 18 sentinels out of almost 100,000 farms
with a probability of 65% in approximately 13 days after first infection. This finding
can be further improved by including nodes with the largest in-component (highest
vulnerability), which increases the detection probability to 86% within 8 days after
first occurrence of the disease.

10.1 Introduction

Diseases in livestock holdings have been a major challenge in the industrial meat
production and related economy in the last decades. For example, the foot-and-
mouth disease (FMD), which broke out in Great Britain in 2001 in herds of cloven
hoofed animals, caused estimated costs of 8 billion British Pound [1]. In rare
occasions FMD could even pose a health risk to humans, which means that it
becomes zoonotic, that is, it can be transferred from animals to humans. In general,
outbreaks of animal-related diseases should be prevented for multiple reasons: They
diminish animal well-being, reduce productivity, cause great economic losses, and
might be transferable to human.

The study of spreading livestock diseases contributes to a better understanding
of contagion processes in general [2]. To model an infection many mathematical
models have been successfully investigated such as the SIR (susceptible-infected-
recovered), SIS (susceptible-infected-susceptible) or SI (susceptible-infected)
model [1, 3-5]. Major transmission routes of disease spread may be geographical
proximity, where aerial transmission is the main carrier. In addition, arthropods
(mosquitoes or ticks) can be vectors. We will focus on the trade of livestock, which
was the main route due to direct transmission between animals, for instance, during
a swine-fever outbreak in Germany in the 1990s [6]. The disease transmission
between animal holdings takes place, if an infected animal is transported from one
farm to the next. To model and analyze the impact of disease spread due to livestock
trade, we use concepts from network science [7].

Since livestock-trade networks span tens of thousands of agricultural holdings, it
is not possible to examine every single farm for an infection due to limited resources.
Examinations should therefore focus on some premises with a high probability of
being infected in case of an outbreak. In Ref. [8], Bajardi et al. analyzed the Italian
cattle-trade network and presented a novel surveillance concept. We will apply the
same framework to identify special nodes, the so called sentinels, that may be
affected by a potential outbreak occurring in the system with a high probability. We
will demonstrate that the number of sentinel nodes is several orders of magnitude
smaller than the total number of animal holdings. For this purpose, we consider
different selection protocols and show that surveillance can be made much more
efficient by concentrating resources on a few nodes.
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This chapter focuses on the data of the German pork industry, which is one of
the largest in the world. Every year, five million tons of pork meat are produced and
the rate is increasing.! Therefore, investigating efficient detection schemes on the
underlying network is of great relevance.

The rest of this chapter is organized as follows: In Sect. 10.2, we will introduce
the susceptible-infected-recovered model and some concepts from network science.
We will show how an invasion path evolves on a temporal network allowing to define
functional clusters. In Sect. 10.3, we describe the data under consideration and
summarize the steps taken to analyze the network on a temporal basis. Furthermore,
we apply strategies proposed in Ref. [8] to the network and discuss the possibility
to identify sentinel nodes. Finally, we conclude with a summary in Sect. 10.4.

10.2 Theory

In the following, we will review basic aspects of the susceptible-infected-recovered
(SIR) model (Sect. 10.2.1) and discuss how an epidemic can spread in a network
via invasion paths (Sect. 10.2.2). We provide details on our numerical simulation
in Sect. 10.2.3. The characterization of different nodes in the network according to
their in- and out-components will be the topic of Sect. 10.2.4 and we will elaborate
how clusters evolve from different invasion paths in Sect. 10.2.5.

10.2.1 Deterministic Susceptible-Infected-Recovered-Model

To describe the spreading of an infectious disease in a population, we need a model
for its progression [1]. Let us assume that size of the population is constant and that it
can be divided in susceptible (or healthy) S, infected (and therefore infectious) I and
recovered (and hence immunized) individuals R. Following the transition scheme

sA 1 2R

a susceptible individual becomes infected with a probability o upon contact with
an infected. After an infectious period of B~!, where B denotes the recovery rate,
an infected individual turns into a recovered one. Note that this scheme does not
account for births, deaths, or migration. In our study, we consider a deterministic
version of the SIR model with a fixed recovery time and guaranteed infection upon

YAgrarpolitischer Bericht der Bundesregierung (2015). Bundesministerium fiir Ernihrung und
Landwirtschaft (BMEL), available as http://www.bmel.de/SharedDocs/Downloads/Broschueren/
Agrarbericht2015.html
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contact, that is, « = 1 [8, 9]. Alternatively, the SIR dynamics can also be written as
a set of differential equations [10].

Livestock diseases may spread directly between animals. Here, we model a
corresponding contagion process on a broader perspective by considering the
agricultural holding as epidemiological unit. Our main goal is not to investigate a
detailed model for the local disease dynamics within a farm. Instead, we assume that
every infected animal will transmit the disease immediately to the whole population,
when it arrives at another farm. In the beginning of each simulation, all premises are
considered as susceptible or disease free except for a single node [8, 11], which
we call the seed. The infection is transmitted in each time step along outgoing links
connected to susceptible neighbors, which then transmit the disease in the following
time step further in the network via their susceptible neighbors and so on. In short,
the considered model consists of two dynamical mechanisms [8]:

1. A susceptible farm will be infected with a probability o = 1, if it receives an
animal from an infected farm.

2. A farm stays infected for a duration of 7 days, which we call the infectious period.
We set this value to T = B! = 7 days. Afterwards, the farm recovers and cannot
be infected again.

Note that the first mechanism implicitly accounts for directionality. Opposed to
other mobility scenarios such as commuting, only the node at the end of an edge
is at risk to become infected in a production chain. If a susceptible farm sells an
animal to an infected one, it still maintains its disease-free status. The advantage
of such a deterministic model is a significant reduction of computational effort.
It allows us to consider all nodes as a possible starting point of an outbreak.
In short, our numerical findings provide information in terms of a worst-case
scenario. Bajardi et al. also obtained similar results using a stochastic modeling
approach [8].

The next sections describe how an infection takes place on a temporal network
and how the algorithm used in this study is implemented.

10.2.2 Temporal Networks

As Vernon and Keeling pointed out in Ref. [12], the spread of infectious diseases is
only predicted correctly, if the chronology of contacts is accurately accounted for.
For a realistic model of disease transmission, we therefore consider a directed tem-
poral network, because typical trade connections take place on different timescales
and a disease can only be transmitted along time-respecting paths.

Next, we will give a short introduction into the mathematical description of
temporal networks [13-15]. We define G = (V, E) as a directed, temporal graph
consisting of a set of nodes V and time-stamped edges E connecting these nodes.
For further reading, in particular connected to livestock-trade networks, we refer to
[8,9,12,16, 11, 17, 18].
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Fig. 10.1 Snapshot of a schematic network for three different times. Initially node v, is infected
(indicated by the red dot) and the disease can spread to node v3, which is susceptible (indicated by
the black dot), via v,

If an outbreak at a node v; can reach a node v;, there has to be either a direct
link, that is, an edge, or an indirect connection. The latter case is described by
a path from one to the other. Such a path P; consists of a sequence of edges
via intermediate nodes v;, where no node is visited twice. Therefore, a path is
given by:

Pij = [(vi’ U1, tO) ’ (Ul, U2, tl) A (Un_l’ Uj» tn—l)] )

The length of the path is the number of edges n. Note that we introduce a time
stamp to each edge of the path. Hence, a time-respecting path satisfies: #p < t; < - - -
< t,—1. Between a pair of nodes, there might be a large number of paths of different
lengths [19]. We stress that a path with the smallest number of edges might not be
the fastest depending on the specific timing of its edges [20]. For a disease spread
between two nodes, the earliest arrival time is of particular importance. We call the
set of directed, time-respecting edges starting at a particular seed node invasion path
I" . In the considered deterministic SIR model, just the first contact with the disease
infects the node. Recurrent infections will have no effect as repeated infections are
not possible.

Figures 10.1, 10.2 and 10.3 provide different perspectives of a spreading process
on a temporal network. The disease starts at a single infected node v;. While
Fig. 10.1 depicts a series of snapshots at different times, Fig. 10.2 shows an overlay
of the snapshots, where the times, when an edge is active, are explicitly given. In
this schematic example, an invasion path I3 = [(v{, va, t = 2), (vo, v3, t = 3)]
exists between the initially infected seed node v; and node v; via v,. Node vy,
however, cannot be infected, because the connection P4 takes place, before the
outbreak reaches v,. Hence, the path Py = [(vy, va, t = 2), (v, v4, t = 1)] is not
time-respecting and violates causality. The notion of an invasion path includes the
possibility of branching into tree-like transmission routes. A time-layered aspect is
depicted in Fig. 10.3. Here, the number of nodes that are going to be infected in
every time step, so called incidences, is easy to see.
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Fig. 10.2 Overlay of vl .
snapshots of a temporal

network (cf. Fig. 10.1). A

time-respecting path leads

from node v; to v;. If one t=1
aggregates the network over

all times, however, a path v2
between v and v4 emerges .
that does not exist in the

temporal case vl t=2
Fig. 10.3 The same temporal vl

network as in Figs. 10.1 and

10.2, but in a layered

representation. In time step

t=1 two susceptible nodes v2
have contact. Only in step

t=2 and t=3 the disease can

be transmitted V3 .

v4

10.2.3 Modelling an Infection on the Network

To model the spread of an infectious disease on the network, we use an algorithm
of breadth-first-search type to iteratively simulate the deterministic SIR dynamics
introduced in Sect. 10.2.1. The main steps are the following: We start at a seed
node v; € V and mark it as infected at time #y. In every time step #,, we identify all
edges (v;, vj, 1,) that start at the initially infected node v; (or in further steps at nodes
along the production chain originating from v;) and lead to a susceptible node v;.
All nodes that can be reached this way are marked as infected, that is, we assume a
transmissibility of 100%. A node can transmit the disease as long as it is infected.
After having acquired an infection, the node stays infected and infectious for a fixed
period, which we choose as t = 7 days. Subsequently, we iterate over all infected
nodes v; and mark those, which have recovered, as removed. In the next step the time
t, 1s incremented by one corresponding to the temporal resolution of the available
data and the process will be repeated, until no more infected nodes are present. The
time that it takes from the beginning of the outbreak to its termination is called the
outbreak duration.
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In the next section, we will summarize some measures of a temporal network,
which help to characterize its structure.

10.2.4 Measure of Centrality

There is a large number of measures that quantify the centrality of nodes in a
network [21-23]. For epidemiological purposes, central nodes may have a high
chance to become infected or may transmit a disease to large parts of the network.
In this section, we will focus on some of those measures that have a direct
epidemiological relevance.

In network terminology, the out-component con(vi, T, t9) of a node v; is given
by a set of nodes that can be reached from a primary infected node v; € V. The
parameter t is the finite infectious period introduced in Sect. 10.2.1 and 7y denotes
the starting time of the epidemic. In general, a large infectious period 7 produces
more secondary outbreaks and leads therefore to a greater probability to reach
more nodes in the network [11]. cou(vi, T, fp) can be calculated as the union of
the sets of nodes along all possible invasion paths originating from v; at time
to. This out-component corresponds to the final size of an epidemic, which is an
important quantity in epidemiology. It indicates the accumulated number of all
infected individuals during an epidemic. The impact of a node in terms of the size
of its out-component can be interpreted as a measure of centrality.

Another important network property is the set of nodes, from which a particular
node v;, € V can be infected. This is called in-component c,(v;, T, fp). The size
of the in-component can be used as a measure for the vulnerability of a node [11].
Furthermore, we define the out-degree k" and in-degree k}“ of node v; as the number
of edges, which leave a node (selling events) or arrive at a node (buying events)
aggregated over the whole observation time, respectively.

After this brief excursion to notions from network science connected to epi-
demiology, we will introduce additional aspects such as seed clusters, which
contain nodes with similar invasion paths and spreading behavior, in the next
section.

10.2.5 Invasion Path and Seed Clusters

If we consider a node v as infectious and if it has contact with susceptible
nodes during its infectious period over some directed links e, the disease will be
transmitted in the framework of the considered deterministic SIR model. If this node
is the origin of the disease, we call it a seed. All nodes, which will be infected as
time goes on, are part of one of its invasion paths at least. As defined in Sect. 10.2.2,
an invasion path of length n € N consists of a set of directed edges {ey, ..., ¢,—1} <
E connecting a set of nodes {vy, ..., v,} C V attimes fy < - -+ < f,,_.
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The invasion paths depend strongly on the initial conditions given by the starting
time ¢y and seeding node v;. To explore the dependence of the spreading process
on the initial conditions, we aim to identify similar spreading patterns. For this
purpose, we use the unions /' and I, of invasion paths of two seeds at a fixed
starting time #y, to compute the similarity between them. We define the Jaccard
index ®1, as the relative overlap of the two sets measured by the number of their
common nodes:

|17 NI
Op=———, 10.1
12 UL (10.1)

where |I"| denotes the number of nodes. In words, we calculate the fraction of
the sizes of the intersection between the two node sets and their union. Consider
Fig. 10.4, where a schematic example of two invasion paths I"| = [(vy, v3), (v3, W4),
(V4, Ve,), (V6, Vg)] and F2 = [(Vz, V3), (V3, V4), (V4, V6), (V6, Vg)] is shown in blue and
red, respectively. We find a Jaccard index of ® 1, = |I"1 N I',|/|T"1 U I'5| = 3/7 as
the relative overlap of the two paths.

Since the disease can in principle start from any node, we need to consider every
node pair at a fixed starting time #y, and evaluate the similarity of their invasion
paths. If we calculate this overlap @;; between every pair of potential seeds (v;, vj),
it is possible to construct a weighted and undirected network, which is called the
initial-condition similarity network (see Fig. 10.5). In that network, nodes refer to
invasion paths, which are determined by their seed. The strength of a link between
two invasion paths I'; and I'; is given by the overlap ®;; € [0, 1]. This gives rise to

v5

o .
! \vs
®

O 3 A
—).—)‘ / r5

v/ .\ O\

r ‘—>.

Fig. 10.4 Overlap between invasion paths "] = [(v{, v3), (v3, V), (V4, Vs), (vs, v8)] (blue), I'y =
[((v2, v3), (3, va), (v4, Ve), (ve, vo)] (red), I"3 = [(vo, v2), (v2, v3), (V3, Va), (V4, v7), (v7, vo)] (green),
I' y = [(vs, vg)] (orange), and I's = [(vg, vg)] (pink). The paths I"| and I, have nodes vs3, v4, and
Vg in common, which results in a Jaccard index &, = 3/7.The value ®,3 = 4/7 is found for I",
and I3, but not for I"| and I3, which is &35 = 2/9. The connection of two nodes vs and vg to the
same final node vg with the paths "4 and I's can be seen as a triadic motif for a relatively high
Jaccard index of ®45 = 1/3. The Jaccard index between " and "4 is ®14 = 1/6
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an all-to-all connected network. If we apply a threshold ®y, to the edge weights in
that network and disregard smaller ones, the resulting network disintegrates and we
obtain subsets of nodes with similar invasion paths I". This thresholding can lead
to disconnected subgraphs and we call their connected componenents clusters. The
bottom panel of Fig. 10.5 depicts the two clusters obtained for invasions paths of
Fig. 10.4 for a threshold of 1/3 < ®y < 2/5. We define the size of a cluster by the
number of seed nodes at the origin of the invasion paths that lead to the formation
of that cluster.

Note that it is not required that all nodes in the same cluster are connected with
each other by an invasion path. If two nodes v; € V and v; C V belong to the same
cluster, it simply means that there is a set of other nodes {vi, v2, ..., v,} C V that
have an overlap ®;;, ®1, - - -, ©,, greater than the threshold, but not necessarily
that the overlap ®@;; is greater than @y,. See, for instance, the Jaccard index for the
two pairs of invasion paths (I"y, I',) and (I, I'3) in Fig. 10.4. The respective
overlaps are ® |, = 3/7 and ®,3 = 2/3, although the Jaccard index between I
and I'3 is smaller: ®;3 = 1/4. It is also important to note that these different
clusters evolve over time. Invasion paths, from which clusters are computed, refer
to the same starting time #y. Since an invasion path depends on f(, the clusters
are time dependent, too. The robustness of the clusters will be the topic of
Sect. 10.3.6.

Based on our numerical simulations, we measure the overlap of every possible
pair of seeds to group nodes in clusters. Note that geographical proximity is not a
necessary initial condition for this network-based procedure. Therefore, two nodes
that have a great geographical distance can be part of the same cluster because of
their similar invasion paths.

0723 = 4/7
©45 =1/3

623 =4/7
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Many nodes considered as seeds for an outbreak lead to short infection paths
[8, 19], but high Jaccard indexes. See, for instance, the triadic motif depicted in
Fig. 10.4. Two premises (node vs and vg) are just connected to the same dead end
(node vg), that is most likely, a slaughterhouse, which yields an overlap of 1/3. To
avoid these misleading high values, we consider only infection paths that contain at
least 10 nodes. Both of these restrictions still lead to the emergence of non-trivial
clusters of initial conditions, that is, other than single, isolated nodes. Nodes with an
out-component |coy| > 10 nodes have a high spreading potential and usually belong
to a part of the network that is called giant in-component (GIC) or giant strongly
connected component (GSCC) [19]. The latter is defined as a set of nodes, in which
any pair of nodes is connected by a directed, time-respecting path. The GIC consists
of an additional set of nodes that are not part of the GSCC, but are connected to the
GSCC via time-respecting paths.

In the next section, we will present the methodology to compare clusters obtained
for different starting times. This will lead to the analysis of the robustness of the
clusters.

10.2.6 Measurement of the Robustness of the Clusters
Over Time

The method described in the last section leads to a partition {C;(y), C2(tp), - - - }
of different clusters based on the similarity of invasion paths with starting time f,
[8]. We will consider only the M largest clusters in the following. To measure the
robustness of a cluster C;(#) at a later time ¢, we compute the relative change of the
cluster size in comparison to any of the M largest clusters:

| Ci (%) N Ci(1) |
| Ci(to) |

pij (o, 1) = (10.2)

This M x M matrix {p; } represents in every row p;(fo, t) the fraction of nodes of
Ci(tp) present in the cluster C; (7), which is computed according to invasion paths
starting at time 7. If the cluster C;(ty) persists or becomes part of one larger cluster,
the row p;(ty, t) will have one entry equal to 1, and all others will be zero. Similarly,
when all nodes of C;(ty) are redistributed over the M largest clusters, the sum over
the i-th row will be unity. Following this intuition, we define a robustness measure
by o; (tp, 1) = Zjﬂi 1 pij (to, ). This quantity will be smaller than 1, if some nodes of
cluster C;(ty) are not present in any of the M largest clusters at time ¢. Note that for
to # t, the matrix {p;;} does not need to be symmetric, because the M largest clusters

might differ considerably in size and node set for different times.
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For further quantitative analysis, we compute the conditional entropy of the i-th
cluster defined as

Zjﬂil pij (t0. 1) log [ pyj (to, )]

H. (10, t) =
| o; (to, 1) log %

(10.3)

The entropy quantifies the redistribution among the M largest clusters at time ¢ in
comparison to an earlier time #y. The entropy vanishes (H; = 0), if C;(fy) is also a
cluster at time 7. Apart from this extreme case of stationary clusters, the minimum
entropy is given by Hyin, (20, 1) = [1 — log(M)/ log(a,-)]_l, if all nodes of C;(zy) are
found in exactly one cluster Cy (¢) at time ¢ except a fraction (1 — o;) of them that
do not belong to any of the M largest clusters anymore. This configuration yields:
pik (to, t) = 0i(to, 1) and pj; (to, t) = O for j # k and we find indeed

1

_ log(M)
log[o;(t0.1)]

H;(to, 1) = (10.4)

In case that all nodes of C;(fy) are equally distributed over the M largest clusters or
if no node of Ci(#p) is anymore found in one of them, i.e., p; (f, 1) = 0 and thus
oi(ty, 1) =0, we have H; = 1 [8].

10.3 Results for the German Pig-Trade Network

This section provides an overview of the characteristics of the considered livestock-
trade network in Sect. 10.3.1. Then, we will apply the deterministic SIR model to
this particular time-varying network (cf. Sects. 10.2.1 and 10.2.3) and thereby calcu-
late different seed clusters (Sect. 10.3.3). In Sect. 10.3.4, we present different ways
to identify sentinel nodes and finally, we will exploit the underlying mechanism to
design a detection scheme for possible outbreaks in Sect. 10.3.5.

10.3.1 From Data to Network

In the present study, anonymized data on pig-trade movements are analyzed in
collaboration with the Friedrich-Loeffler-Institut. The dataset spans the period
from January 1, 2011 to December 31, 2014 and is extracted from the HI-Tier
database.> Within this 4-year period, each German pig holding recorded the number

2Bayerisches Staatsministerium fiir Erndhrung, Landwirtschaft und Forsten (StMELF).
Herkunftssicherungs- und Informationssystem fiir Tiere, available from: www.hi-tier.de
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Fig. 10.6 Schematics of the piglet production fattening
production chain forming the ‘s

. raisin
pig rade [19]. The dashed  preeding _»@— o~ @~ siaughter
arrows refer to deviations / . ‘V \
from this chain, which are . .
present in the data, because T

the network contains more \;\
edges than the minimal ”

production-chain forest . /‘\ . /Y‘ \.

! T = 180 days !

of pigs of every purchase so that we can infer the corresponding movements of
livestock within Germany from the dataset. Note that only the aggregated trading
volume (batches) is recorded in the database. The available resolution for this time-
dependent network is 1 day. Farmers are required to register each transaction within
7 days, which sets the upper bound for the uncertainty of data accuracy. Every trade
record includes the premises of origin and destination via anonymized IDs, the
date, and the number of delivered pigs. From a graph-theoretical perspective, the
dataset can be interpreted as a dynamical network, where nodes, directed edges, and
edge weights correspond to farms, trading events, and the number of traded animals,
respectively. For a detailed, time-resolved analysis of this dataset, see Ref. [19].

Figure 10.6 depicts an illustration of the production chain of the underlying
farming system, which is composed of different farm types. Different stages of
the production chain refer to breeding, piglet production, raising, fattening, and
slaughter. In addition, trades can also be mediated by brokers. These are part of
the recorded transaction in the database, but do not own a farm themselves. The
lifetime of a pig is 180 days, which sets the timescale of the total production chain.
Each farm has an anonymized ID from 0 to 97,980. The considered period of 4 years
contains more than 6.3 million movements with a total trade volume of 615 million
pigs. In the year 2014, 28 million pigs have been bred. This implies that each animal
is traded roughly five times along the product chain indicating a high specialization
and different farm types. Some basic characteristics of the time-aggregated network
are summarized in Table 10.1.

Next, we will present the main results of our numerical simulations.

10.3.2 Outbreak Duration and Size

In our simulations, we consider all nodes as seed and choose the first Monday in
each month as starting time #, or, if it is a holiday, we use the following working day.
In previous studies, these days have been found to show the highest trade activity
in the network and are therefore the days for which the largest outbreak size can be
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Table 10.1 Standard

. Property Value
network properties of the
static, i.e., time-aggregated, Number of nodes 97,980
German pig-trade network Number of edges 315,333
Edge density 32 %1073
Size of GSCC 28 %
Diameter 18
Average shortest path length | 5.5
Path density 0.24
Median and average trade volume of a premises
on a day 32.0,113.4
in a month 88.0, 355.0
in a year 280.0, 2587.6

Diameter and shortest path length are computed for
the giant strongly connected component (GSCC)
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Fig. 10.7 Panel (a): Normalized distribution for the outbreak duration. Duration for a fixed
starting time averaged over all possible seed nodes (red): 41.6 days; median (cyan) 40 days. Panel
(b): Normalized distribution of outbreak size. Average size (red): 149 nodes; median (cyan): 84
nodes. All nodes with an out-component |co,| > 10 are considered as seed. The starting times
to are chosen as the first Monday in each month or, if it is a holiday, we use the following
working day

expected. In this sense, they cause the most harm to the network [19]. Since we are
interested in nodes that can trigger outbreaks of a considerable size, we restrict the
pool of potential sentinels to nodes with an out-component |cqy| > 10.

In Fig. 10.7a, one can see the normalized distribution that an outbreak lasts a
certain number of days in the network. Panel (b) shows the normalized distribution
of the size of an outbreak. Average and mean values are also indicated by red and
cyan bars, respectively. We find that the average outbreak lasts 41.6 days, during
which 149 nodes are infected.

Using a deterministic SIR model on a network to explore a worst-case scenario
(cf. Sects. 10.2.1 and 10.2.3), we find that all outbreaks eventually come to an
end in our simulations. As we show later in Sect. 10.3.3 we observe outbreak
durations of around 60 days for the considered infectious period of 7 days. This
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Fig. 10.8 Distribution of 101F
overlap of invasion paths
calculated based on the

Jaccard index. A minimum is %
found at a value of ® = 0.8 S

(red line), which we choose 3 o
as a threshold to define z 10

clusters
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overlap

is much shorter than the 4 years observation time of the network. In other words, we
measure the complete out-components. Therefore, we conclude that we capture the
entire dynamical process by the proposed modelling framework. See Ref. [13] for a
discussion of finite observation periods for a temporal network.

In the next section, we demonstrate how clusters introduced in Sect. 10.2.5 can
be constructed from the numerical results.

10.3.3 Seed Clusters

Our aim is to design a surveillance scheme that requires only a small number of
nodes. For this purpose, we identify similar spreading patterns and partition the
network in functional clusters. In our simulations, we consider every node in the
network with |coy| > 10 as starting point of an outbreak and consider different
starting times as well. Next, however, we discuss the results obtained for the starting
time ¢ty = January 3, 2011, as an example.

Figure 10.8 shows the distribution of the Jaccard index. As mentioned above,
it describes the overlap of different invasion paths. Therefore, a matrix ® with
elements ®; will be calculated out of invasion paths i and j. For the cluster
calculation, we consider just overlaps greater than the threshold value Oy =
0.8, which corresponds to the minimum in the distribution of overlaps (red line).
Therefore, all overlaps with a larger Jaccard index are considered in the following.
For further information on this subject see Refs. [19, 24]. This choice coincides with
the threshold reported in Ref. [8].

Figure 10.9 shows a ranking of cluster sizes for this threshold (red dots) and
the cumulative cluster-size distribution (blue triangles). We find that there are many
small clusters. More than half of the clusters consist of at most ten seed nodes.
The largest cluster is formed by 284 seed nodes. In the following, we consider only
the largest 18 clusters. They contain at least 79 seed nodes (red horizontal line)
and together cover 31.7% of all seed nodes that can be grouped in clusters (blue
horizontal line).
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Fig. 10.9 Ranking of cluster size (red dots). For the initial time t;, = January 3, 2011 and
the threshold ®y = 0.8, we find 491 clusters. The blue triangles refer to the cumulative
distribution of cluster sizes. The green line marks the 18 largest clusters. The blue line marks
the cumulative cluster distribution of the 18 largest cluster (green vertical line). The size of the
18th largest cluster is indicated by the red line. There are in total 8490 seed nodes in the observed
491 clusters

Next, we compute the outbreak size triggered from each cluster. It is given by
the number of nodes, which can be reached by an infection starting at the seed
nodes that form the respective cluster. We call the corresponding percentage network
coverage. Furthermore, we calculate the power of each cluster to detect an outbreak.
This is quantified by the percentage of outbreaks (detection probability) that involve
any node of the respective cluster. Table 10.2 shows the cluster size, the network
coverage (in %), and the detection probability (in %). In general, we find that
the numbers fluctuate in both the network coverage and detection probability. For
example, there are clusters whose invasion paths appear to be rather isolated in the
network, which results in a small detection probability. Other clusters that do not
necessarily consist of a large number of seed nodes have a much higher probability
to detect an outbreak. For comparison to our findings, consider the results on the 18
largest cluster of the Italian cattle-trade network presented in Ref. [8].

Figure 10.10 depicts numerical results for the 18 largest clusters, which are
computed via the Jaccard coefficient of all invasion paths starting at fy = January
3, 2011. For each cluster, the time series of the prevalence is shown for every node
of the cluster considered as seed (red curves). The black curve refers to the average
of all prevalence curves originating from the cluster. The blue curves correspond to
the size of the epidemic measured by the number of recovered nodes and the black
curve shows again the average.

In general, all time series exhibit a qualitatively similar behavior: an increasing
number of infections leading to a peak, beyond which the curve decreases again
and the outbreak eventually terminates. These qualitative features are in line with
the expected dynamics of the SIR model. All premises within one cluster show a
similar spreading pattern, which means that for a given initial condition of seed



230 F. Schirdewahn et al.

Table 10.2 Cluster size, network coverage (in %), and detection probability (in %) of the 18
largest clusters

Network
coverage of Cumulative
Network nodes with Detection detection
Cluster Size coverage |cou] = 10 probability probability
1 284 0.5 32 38.2 38.2
2 283 0.9 5.8 34 38.7
3 245 1.6 9.9 13.8 43.9
4 214 1.3 8.1 10.8 47.7
5 199 0.7 4.4 10.0 49.6
6 191 0.4 2.8 4.0 50.2
7 146 0.6 3.9 4.5 50.5
8 140 0.5 3.0 25.2 53.7
9 128 0.7 4.7 19.1 56.0
10 121 0.8 4.9 25.4 57.9
11 120 0.4 2.8 23.2 58.4
12 106 0.8 5.0 14.7 59.1
13 103 0.3 1.8 0.9 59.2
14 88 0.2 1.2 43.4 61.2
15 82 0.2 0.9 26.0 65.0
16 81 0.2 1.1 0.5 65.1
17 79 0.2 1.0 0.2 65.1
18 79 0.3 1.7 0.001 65.1

Starting time #y = January 3, 2011

and time (v;, fy) the number of infected premises is roughly the same. We also
find that the timing of the peak does not vary much between the different clusters.
There are, however, considerable quantitative differences between prevalence curves
of different clusters. Consider, for instance, the duration of an outbreak, the peak
number of infected nodes (maximum prevalence), or the total number of infected
nodes. The mean outbreak duration (4;) in the i-th cluster and we obtain that it
varies between 30 and 76 days. The average duration of infection for all 18 largest
clusters is 55 days.

Recall that each cluster refers to a set of seed nodes. Since the out-component of
a cluster is given by the nodes in the network that can be infected from its seeds, the
out-component can be larger than the size of the cluster itself, that is, the number of
its seed nodes. For some clusters (cf. cluster 3 or 4), even the peak of the prevalence
is larger. In order to design an efficient surveillance protocol, we have to make sure
that the infection will be detected very early before the outbreak reaches large parts
of the potential out-component.

After the construction of clusters of similar invasion paths, we will show in the
next section, how this can be used to select a small number of sentinel nodes for
surveillance of the whole network.
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Fig. 10.10 SIR dynamics on the German pig-trade network for the 18 largest clusters. The red
curves refer to the time series of the number of infected nodes for all nodes in the respective
cluster taken as seed. The blue curves represent the number of recovered nodes over time. The
black curves show their average of each cluster. §; is the mean duration of outbreaks in the i-th
cluster. For the starting time fy = January 3, 2011, the mean outbreak mean duration of all nodes
in the 18 largest clusters is § = 55 days. Parameter: infectious period v = 7 days
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10.3.4 Sentinel Nodes

For an identification of potential sentinel nodes, we propose two approaches and
evaluate them in terms of detection probability, fast detection, and minimum number
of infected nodes until detection. The selection of an optimal, that is, minimum, set
is an open question related to set cover problems in combinatorial geometry and has
recently been linked to optimal percolation. See Ref. [26] and references therein.
This family of problems is known to be NP hard. The methods used here serve as
heuristics for the exact problem.

The first protocol consists of the following strategy: Choose the node of largest
or second-largest sum of in- and out-degree of each cluster. This results in 18 or 36
sentinel nodes, respectively. We conjecture that these hubs are good candidates for
the following reason: Hubs are known to be infected at an early stage of outbreaks on
scale-free networks and thus key players for the spreading [25]. The set of sentinel
nodes will be most likely part of the GSCC, because they need to receive and send
livestock from/to many different nodes to meet the selection criterion. Therefore,
they are expected to have a large out-component.

Figure 10.11 shows, how in- and out-degree varies in the two largest clusters.
Nodes with the largest sum of in- and out-degree can be found on the upper,
right side in the figures. The candidate nodes to serve as sentinels (red square and
diamond) are well separated from the rest of the seed nodes that form the respective
cluster (green dots).

As a second approach, we apply the algorithm introduced in Sect. 10.2.3 to infect
all nodes of the network at the starting time 7, and then rank them according to how
often each node appears in an invasion paths. This way, we exploit the size |ci,|
of the in-component, which is equivalent to the vulnerability of a node. The set of
sentinel nodes is given by the top ranked nodes.

Following Ref. [8], we are interested in the nodes that are part of the outcom-
ponent of a large number of nodes. These nodes will be hit by many epidemics

cluster 1 ‘ cluster 2
1200 ¢ = 1 1200 fe om
g 5 -
o %001 L S 900 .
Z; 600 | :; 600 |
e} ° e @
300 F dhes @ 1 ° g00|&e s, .
B 1. sentinel node ® 8 W 1. sentinel node
0 | ° @ 2. sentinel node | 0 *.’ @ 2. sentinel node
0 300 600 900 1200 0 300 600 900 1200
in-degree in-degree

Fig. 10.11 In- and out-degree for all seed nodes of the two largest clusters. We choose sentinel
nodes based on the largest sum of in- and out-degree. These nodes can be found in the upper, right
part of the panels
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starting at different nodes. Therefore, nodes that have a high |c¢j,| are more
vulnerable than nodes with smaller in-component. Some of these nodes, however,
are slaughterhouses and are found at the end of the production chain. They are not
suitable as sentinel nodes for early disease detection, because the damage of an
outbreak would have been done already and could not be contained. These nodes
can easily be excluded, because they have an out-degree k" = 0. In addition,
sentinel nodes should have a significant spreading potential. Therefore, we consider
only nodes as sentinels that at the same time have an out-degree of k7" > 5. We
choose 18 of these, which we call most infected nodes, and take those 18 most
infected nodes together with the 18 nodes of the largest sum of in- and out-degree
in each cluster to define the set of sentinel nodes. In an additional protocol, we also
consider the 36 nodes with the largest in-component for comparison.

Next, we will investigate, how the different protocols to select sentinel nodes
perform in terms of detection probability, detection time and how many nodes
become infected until detection.

10.3.5 Disease Detection with Sentinel Nodes and Results

Applying different protocols to select sentinel nodes as introduced in Sect. 10.3.4,
we calculate the probability to detect an outbreak for every starting day. See
Fig. 10.12, where panel (a) depicts this detection probability based on 18 (blue

1.0 1.0

09 ° ° -. o

o
©

[]
0.8 v’ vy v’ Yovy Vv v

o
[oe]
°

0.7

0.6

detection probability
o o
[*)} ~
4. ]
,‘ < 0
°
Y
[}
detection probability

v 18 sentinel nodes v 18 sentinel nodes
e 36 sentinel nodes 0.5 e 36 sentinel nodes
— average — average
- - average - - average

0'40 200 400 600 800 100012001400 0'40 200 400 600 800 100012001400

a) infection day b) infection day

o
&)

Fig. 10.12 Detection probability of 18 (blue triangles) and 36 (red dots) sentinel nodes based on
(a) largest and second-largest sum of in- and out-degree out of each cluster, (b) 18 nodes based on
highest vulnerability (blue triangles) and additionally 18 nodes out of each cluster with the largest
sum of in- and out-degree (red dots). The mean value is depicted by the solid and dashed lines,
respectively: (a) 65% and 70.9%; (b) 82.7% and 86.2%. Each dot refers to the starting time ¢, (day
of initial infection), which is chosen as the first Monday in each month or, if it is a holiday, we use
the following working day. All nodes with an out-component |coy| = 10 are considered as seed
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Table 10.3 Detection probability, time until detection, and number of infected nodes until
detection for the considered selection protocols to determine the set of sentinel nodes

Detection
Protocol probability Detection time / days Outbreak size
18 nodes based on sum of 65.1% 12.5 43.6
in- and out-degree
36 nodes based on sum of 71.0% 10.5 31.2
in- and out-degree
18 nodes based on highest 82.7% 9.0 22.2
vulnerability
36 nodes based on highest 83.1% 8.9 21.4
vulnerability
18 nodes based on highest 86.2% 7.8 154

vulnerability and 18 nodes
based on in- and
out-degree

triangles) and 36 (red dots) sentinel nodes with the largest sum of in- and out-
degree in each cluster, respectively. The blue solid and red dashed lines represent the
average probability of a disease detection, which is 65% and 70.9%, respectively.
Similarly, Fig. 10.12b depicts the protocol, where 18 sentinel nodes are selected
based on the highest vulnerability (blue triangles) or additional 18 nodes with the
largest sum of in- and out-degree for each cluster (red dots). This results in average
detection probabilities of 82.7% and 86.2%, respectively.

Table 10.3 provides an overview of the obtained results for all proposed selection
schemes. Considering twice as many sentinel nodes improves all considered
quantities: a higher detection probability, a shorter detection time, and a smaller
number of infections until detection. An earlier detection by 2 days results in a
reduction of the epidemiological impact by about 25%. This is in agreement with
findings of Ref. [8]: The information provided by the sentinel nodes is meaningful
as long as the detection occurs rather early during an outbreak. This result is not
only important for surveillance, but also for identifying the initial outbreak location,
because it enhances the chances to trace the invasion path back to the seed. An even
stronger improvement can be obtained, if the selection of sentinels is based on the
highest vulnerability. This advantage can be further improved in combination with
nodes of largest in- and out-degree. Then, the detection probability is larger than
86% with an average detection time of 7.8 days and an average outbreak size of 15.4
nodes. This gives a larger benefit than choosing 36 nodes with highest vulnerability,
for example.
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10.3.6 Cluster Development in Time

In this section, we will investigate the temporal stability of the clusters given their
importance in the identification of sentinel nodes. Consider a pair of seed nodes,
which are a part of the same cluster at one instance in time. They might, however,
not belong to the same or any other cluster at a later time. In detail, we consider
the development of the 18 largest clusters. Based on two partitions of clusters at
different times, that is, P(ty) = {Ci(ty), Ca(tp), - - -, Cis(tp)} and P(¢r) = {C;(2),
Cy(1), -+ -, Cig(1)}, we calculate the relative overlap via p;; = |Ci(tp) N C;j (1)|/]Ci(to)
€ [0, 1]. We expect p;; = 0, if the clusters C;(fp) and C; () do not have a single node
in common, and unity, if clusters persist or expand.

Figure 10.13 shows the matrix {p; } for different times. Trivially, we find the
identity matrix for t = f#; due to disjoint clusters corresponding to disconnected
subgraphs. The clusters evolve and change their nodes over time. For subsequent
times 7, nodes belonging at 7y to the same cluster can be redistributed in multiple
clusters, which might consist of additional nodes, or might not be a part of any other
subsequent cluster. One can see that for times t = 7, t = 14, and ¢t = 21, there is no
significant overlap anymore. This can also be seen in the bottom panels, which show
a distribution of the overlap between the 18 initial clusters and the 18 subsequent

clusters.
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Fig. 10.13 Change of the cluster partitions. The color code refers to the relative overlap of the 18
largest clusters at different times in comparison with #yp = 0 corresponding to January 3, 2011. The
top left figure shows the comparison from the cluster #y = 0 with itself, that is, a trivial perfect
overlap along the diagonal. The lower four figures show the distribution of the cluster overlap at
respective times
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How rapidly and to which extent the node set of the clusters changes can be
calculated with the entropy function (cf. Sect. 10.2.6), which will be the topic of the
next section.

10.3.7 Entropy of Clusters

In order to quantify the robustness of a cluster, we compute the conditional entropy
H;(ty, t) of each cluster C;(ty) given by Eq. (10.3) comparing different times. This
provides insight, how much the nodes of a cluster of time 7 are redistributed among
the M largest clusters at a later time . Recall that H;(#, ¢) vanishes, if the set of seed
nodes forming a cluster does not change over time. We have H;(fy, ) = 1, if no node
is part of any of the M largest clusters at time #. For comparison, we also calculate
the minimum entropy Hpin, Which corresponds to the case that a fraction of nodes
of a cluster still form a cluster and the rest does not belong to any of the M largest
clusters.

Figure 10.14 depicts the entropy H(#y, t) (red dots), the minimum entropy Hp;,
(blue circles), and the difference between them (yellow bar) for exemplary clusters
4 and 15. The difference H(t, t) — Hpin can be interpreted as the robustness of the
cluster. A cluster is more robust, if that difference is smaller (and the entropy is not
equal to one as in cluster 15), because many nodes from the starting time are still
found in one of the 18 largest clusters. Cluster 4, for instance, remains stable over
the first 30 weeks.

In cluster 15 we can see that H = 1 at 11 different times due to the peculiarities
of the cluster development. Cluster 15 has such a high entropy for many weeks,
because its nodes do not belong to any of the 18 largest clusters at these times. In
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Fig. 10.14 Entropy H(t, 1) of cluster 4 and 15 over time (red dots), minimum entropy (blue empty
dots), and their difference (yellow bars)
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contrast to the fluctuating entropy of cluster 15, cluster 4 is quite stable over the
first 30 weeks. The time-resolved entropy of the 16 largest clusters is added in the
appendix as Figs. 10.15 and 10.16 for comparison.

10.4 Conclusion and Outlook

We have applied the concept of sentinel nodes proposed in Ref. [8] to the
German pig-trade network. For this purpose, we have implemented a deterministic
susceptible-infected-recovered model and computed invasion paths for different
seed nodes and starting times. Our results have shown that the approach of seed
clusters, which was initially applied to the Italian cattle-trade network, can indeed
be transferred to the considered dataset. The clustering method can be used to design
an optimized surveillance system and allows for rapid and efficient containment
strategies.

Large delays between the start of the outbreak and its detection results in larger
outbreak sizes. After a few days, the outbreak often reaches a number of nodes far
greater than the size of the cluster (number of seed nodes identified to yield a similar
outbreak pattern), where it started. Then, the disease is able to infect large fractions
of the network. In addition, high temporal variability and the complex nature of
the network make identification of the possible origin of the outbreak a particularly
difficult task. Recently, some approaches using the concept of effective distance
have been proposed [27, 28].

Following a network-based analysis, we have identified farms that are at a high
risk of becoming infected and subsequently promote the spreading the disease
further. We have conjectured that these farms are good candidates to detect an
outbreak early in its evolution. Therefore, we have chosen one or two nodes
with the largest sum of in- and out-degree for each cluster. In addition, we
have also considered farms that have the largest in-component in the network.
These nodes are very vulnerable, because they can be infected from a large
number of outbreak origins. We have found out that these farms, when consid-
ered as sentinel nodes, have the highest detection probability and the shortest
detection time. As a consequence, the outbreak size before detection can be
considerably reduced. This can be further improved by combining both selection
protocols.

Acknowledgements This work was supported by Deutscher Akademischer Austauschdienst
(DAAD) within the PPP-PROCOPE scheme. FS, AK, and PH acknowledge funding by
Deutsche Forschungs- gemeinschaft in the framework of Collaborative Research Center 910.
The work is partially funded by the EC-ANIHWA Contract No. ANR-13-ANWA-0007-03
(LIVEepi) to VC.



238

A.1 Appendix

F. Schirdewahn et al.

_Cluster2

- _Cluster1
— 1}
o8| , o
i 0.6} | s . ,?(o..';/ot%\\‘/.\\ Pt
Soafy W W Lo
2 0.2
® ol M Huﬂﬂwﬂﬂﬂﬂuwﬂwﬂ

(t,%0)

[
e o %t aw el

o

entropy

L

o 2 g ’,* o
v ® b/.o ®e b, b’.

1
1
g o

0 5 10 15 20 25 30

O ==

5 10 15 20 25 30
time (week)

_Clusters

entropy H(t, ty)

© o o o
O N M O ®H

©

Q
o /
2 Qo 0o bp\oo’o“oo'd \

i sl

0

10 15 20 25 30
time (week)
_Cluster7

time (week)
_ _Clusters
~—~~ 17
= 0.8
i0_6,7'b"‘.;\.\ e ; ..'9\005 \¥“
g- 0.471'?Q ’dqbpl o\\‘/Q\ © /I o\ OI ‘Bo ]
=2 il b
NI AT
0 5 10 15 20 25 30
time (week)
- _Cluster6
— Ly
Zo08f i\
i06—fﬂQ * e
(; V7 \ p\‘ \./\ i Q
st L
502 Ll ﬁﬂ ll. 1.1y
oéﬂuy?ﬂuhuﬂﬂu 0. ﬂ”%ﬂjﬂ

o
o 0 =

| ° e
e ° * I A bo'oh"

entropy H(t, )
.|>

© o o

i il

o

o
soy -

v O
)
# \./Oo

0 5 10 15 20 25 30

0 5 10 15 20 25 30

time (week)
_Clustery

time (week)
_ Clusters

— 17
0.8 i
m 0.67* /Q . 'Q . Vo
a 04* 'H\ ’IO\\ ¢ ’%b\o./\‘ I \..‘,
gozz\‘\co*ol\oo \OO’U QOODO
c 0.2}
qJ ]

0 ﬂ” H I]I]nl]ﬂl]” [I ﬁﬂﬂ”

oy”ﬂﬂuuHMHMHMDJ THHIR

0 5 1015202530
time (week)

o
0 5 10 15 20 25 30

time (week)

Fig. 10.15 Entropy H(#, t) of the eight largest clusters not mentioned in the main text (for cluster
4 see Fig. 10.14) over time (red dots), minimum entropy (blue empty dots), and their difference

(yellow bars)



10

entropy H(t,t,) entropy H(t,t,) entropy H(t,ty)

entropy H(t,ty)

Surveillance for Outbreak Detection in Livestock-Trade Networks

0.8}
0.6}
0.4}
0.2}

0.8]
0.6]
0.4}

0.2

0.8f
0.6}
0.4¢

0.2

0.8}
0.6}
0.4}
0.2}

Cluster10
» S
N " b S
¢ ‘P‘\\ \ / \t‘“\’\ %0 ad »e \/.\
K /’\‘ .)o\ ° 4 & ‘Q“
oQ go h o A /qtfzoxyob,o/q\ %o )
I H Q o oﬁ % / ”\ |
a0, ool
0 5 10 15 20 25 30
time (week)
Cluster12
f
s o
° %% e R et gliet r
lp\\\IO bﬁ.oo o IO \ ;/p O\ \8/ \xf)QBIP‘O
e oo o Uﬁp |
éUpU,UuHUHUUHU”u””u,u,u alvnell
0 5 10 15 20 25 30
time (week)
Cluster 14
o
i/l*\
i
:.'\ s R R ,¢ \P\..bo
II o 5\./ \.‘1".‘“/ \.‘P'.,II [eX) \.
’/\\‘\/Il\q Lo OOOO/\I \p_o
F it i
ol Dol 1 LD
0 5 10 15 20 25 30
time (week)
Cluster 17
et TV
: 1 ,I" “alf\\/ |
R ARV
) | v vl g |
R, v do kil | R
AV PO
ARV AR
<;'r'r'r'r'r'r'r'r'r'r'r'r'r'r”'ru'r'r'r'r'ru'r'ruu'rru’

0 5 10 15 20 25 30

time (week)

entropy H(t,ty) entropy H(t, ) entropy H(t, 1)

entropy H(t,tg)

239
— Cluster11
1t po 2 9
0.8} - | "“r\ :
PRI A L e
0_6, ] \\ /\\ Illl q: ,. \./ 5\ // i
¢ @“9\.0 \\ :é ‘OO\ 0% \ﬁ/oO o
0.4} GO eer %y ey Y
0.2¢! ” ” ,
Oé’uTTTuuuuTuuu”TTuTuu”uu” uu”” ”’
0 5 10 15 20 25 30
time (week)
- _Cluster13
Y
0.8 if
0.6’? "i”' \‘\\ o ‘/(:\ [}
"R"lb.\lb‘o —OI/“,\/t‘\
0.4f 1y ed 8 LR TN Rl
0.2|! i i 5[[%%% |
oéTuTTTTuT”Tu”TTTuuuT”u” u” U[J’
0 5 10 15 20 25 30
time (week)
- Cluster16
1t
0.8}
0.6 Pe 2 ll.h\ R léfq\\.‘o \/,
0.4 /o2 o] %/ "y ©°
0.2 ga\dd\ \S’Q\Q. o8/ Oo&fb’% \p\do
OélTu Huﬁuuﬂﬁ ”n ﬂ”” H” I]|] |] ﬂ”””
0 5 10 15 20 25 30
time (week)
_Cluster18
1t e-o H ’9'? ﬁ
[}
0.8{| > Hu, RS
0.6L |:I| -Z:-’\"_l :;Lin I’Q\;ﬁ l‘\\; \(‘ER‘Q ;\.,
04*,‘ Q\olll Q\i l?/QO}lQ\',IQ:)'I Iu, 7 \210” ol
I o a NG ¢}
0.2} O” ” ,
Oér?r”ﬂf”ﬂruuuw’?u uTTT TUTUU?T””’
0 5 10 15 20 25 30

time (week)

Fig. 10.16 Entropy H(ty, t) of the clusters 9-18 except for cluster 15, which is shown in Fig.
10.14, over time (red dots), minimum entropy (blue empty dots), and their difference (yellow bars)
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