Chapter 9

Leveraging Topological and Temporal
Structure of Hospital Referral Networks
for Epidemic Control

Vitaly Belik, André Karch, Philipp Hovel, and Rafael Mikolajczyk

Abstract Antimicrobial-resistant pathogens constitute a major threat for health
care systems worldwide. The hospital-related pathway is a key mechanism of
their spread. Contrary to intra-hospital transmission data that requires sophisticated
contact tracing technologies, data on inter-hospital transmission is collected on
a regular basis. We investigate the dataset of patient referrals between hospitals
in a large region of Germany. This dataset contains approximately one million
patients over a 3-year period. The dataset is used to build a dynamic network of
hospitals where nodes are hospitals and edges represent movements of patients
between them. We consider the worst-case scenario of a highly contagious disease
corresponding to deterministic infection dynamics. Furthermore, we investigate the
impact on epidemic processes of the correction to the temporal network due to
home (or community) visits of possibly contagious patients returning to hospi-
tals. Moreover, we implement an extensive stochastic agent-based computational
model of epidemics on this network. By leveraging the topological and temporal
network structure for epidemic control, we propose intervention schemes able to
hinder spread. Our approach can be used to design optimal control strategies for
containment of nosocomial diseases in health-care networks.
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9.1 Introduction

Nosocomial or healthcare-associated infections are a significant mortality and
morbidity factor in Europe and across the globe [1, 2]. As an additional challenge,
many of these are caused by pathogens which are drug-resistant. Annually, up to
700.000 deaths worldwide can be attributed to antimicrobial resistances [2]. The
administrative data on patient hospital admission and discharge constitute referral
patterns and is routinely collected by healthcare providers. This data could be used
to identify factors facilitating the spread of nosocomial diseases in a healthcare
system. For this purpose it is important to consider patient-resolved data, because
the identity and causal order of movement events have significant implications
for the spreading dynamics [3—6]. From the data the underlying hospital referral
network could be reconstructed, with vertices being hospitals and edges being
movements of patients between hospitals. The patient movements occur only on
some days and thus the edges of the referral network appear and disappear on daily
basis. Such networks changing form one time instance to another are known as
temporal or dynamic [7, 8].

Note that some aspects of epidemics on hospital referral networks from different
countries were considered in Refs. [9-13]. One crucial assumption in such models
concerns the disease-free status of patients discharged from hospitals, which may
not hold. If such patients return to hospitals, still carrying the pathogen, they may
facilitate the further spread of pathogens. Another frequently neglected aspect are
temporal and topological correlations [14—16]. In Germany only one small regional
network of hospitals was considered on a descriptive level without modeling
epidemic spread on it [17]. In the present study we consider referral patterns in a
big region in Germany with almost one million patients over 3 years and investigate
epidemics on the corresponding network.

In this chapter, we begin by discussing structural properties of the static and
the temporal representations of the referral network of hospitals. Then, we present
results on the analysis of generic deterministic worst-case spreading phenomena (SI
and SIR epidemics) in the static and the temporal frameworks. Finally, we present
results of extensive numeric simulations of an endemic disease (modeled as SIS
epidemics) and evaluate the effect of various control measures.

9.2 Dataset on Hospital Referrals

From patient referral data we extract a network with vertices being hospitals and
edges between hospitals corresponding to direct relocations of patients between two
hospitals. One should note, that direct relocations between hospitals correspond only
to approximately 3% of referrals in the system. The rest are relocations from or into
the community (non hospital whereabouts of patients). We consider only relocations
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Fig. 9.1 The average number of referral events for every day of the week. Left panel: admission
frequency. Right panel: discharge frequency. Error bars correspond to the standard deviation

between two hospitals on a single day, which is the majority of cases.! The dataset
was preprocessed to exclude overlapping stays in different hospitals and overlapping
stays in a single hospitals were merged together.

9.2.1 Referral Patterns

The dataset spans from the Ist of January 2009 until the 31st of December 2011.
Each data record corresponds to a hospital stay and includes the day of admission £,
the day of discharge ", the anonymized hospital ID and the anonymized patient ID.
In our dataset we have 2,037,460 records for 917,834 individuals. The dataset con-
tains patients that were in the system on the 1st of January 2009 (9,874 individuals).
The first admission date mentioned in the dataset is the 30th of November 2005.
Admission patterns manifest strong temporal regularities (Fig.9.1). The number
of admissions is maximal on Monday (around 2200) and continuously decreases
until it reaches a minimum around 700 on Saturday. The number of discharges is
minimal on Sunday (around 600), increases until Wednesday, has a small decrease
on Thursday and reaches a maximum on Friday (around 2500).2

There were 1654 hospital IDs in the data. However because the data comes from
a major insurance provider of the federal state under consideration (Lower Saxony)
it makes sense to restrict ourselves only to hospitals located in Lower Saxony. This is
done by considering only hospitals with a maximal number of patients per hospital
per day larger than 30 (as estimated from the data). This results in 185 vertices
(Fig. 9.2, see also Ref. [18] for justification of the procedure).

"However there were around 300 patients which were apparently transferred between 3 hospitals
in one single day. We exclude those from the network reconstruction.

2This weekly dynamics will be also reflected in the epidemic dynamics (Fig. 9.6).
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Fig. 9.2 Visualization of the aggregated network of hospitals obtained by considering direct
movements of patients between hospitals as edges. The size of vertices is proportional to their
in-degree

9.2.2 Network Properties

If we consider the whole available time span and aggregate the temporal edges,
we obtain an unweighted static network. In this case, a static edge between two
vertices is present, if a temporal edge occurred at least once. In the resulting static
network there are 4,949 directed edges. The average in/out-degree is 27 (+17 and
413 respectively, £+ denotes standard deviation) with the diameter equal to 3. In
Fig.9.3 the distributions of in- and out-degrees are presented. Note that the in-
degrees show a less heterogeneous distribution, than the out-degrees. The chance to
be taken out of a hospital into another one is more less heterogeneouly distributed
than the chance of being admitted to a hospital from another hospital — there are
just a few major hospitals admitting patients from other hospitals. Note that degree
distributions resemble an exponential distribution characteristic of random Erd&s-
Rényi networks (in the limit of a large network size).

So far we considered the aggregated network of hospitals, where we were not
concerned with the temporal order of edges. Now we consider a temporal network
and review its basic temporal properties.
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Fig. 9.4 Daily properties of the temporal referral network of hospitals. Histogram of the number
of edges per day (left). The bimodal distribution corresponds to the small number of edges (around
30) on weekends and large number of edges (around 90) during the rest of the week. This becomes
clear from the plot of the average number of edges versus day of the week (right). Error bars
correspond to standard deviations

After data preprocessing we obtain about 67,000 temporal edges (edges with the
corresponding timestamps of their occurrence) for 1,099 days. On average there
were 61+22 edges per day. However, in the distribution of the daily number of
edges there are two peaks attributable to particular week days (Fig. 9.4).

We define the activity of an edge j — i as the number of its occurrences
w;; in a temporal network. In a directed graph an edge could be an incoming
edge for a recipient node or an outgoing edge for a donor node. The number of

. . . . . in _
occurrences (or activity) of incoming/outgoing edges for a node reads a;" = Zj w;j

and a?" = Zj wj; respectively. Distributions of wj;, a}“, and a® over the whole time

1
span are presented in Fig. 9.5. Concerning activity of incoming/outgoing edges, we
see the picture similar to the in/out-degree distribution (Fig.9.3) — there are less
vertices (hospitals) with the high recipient activity. Activity of outgoing edges is
distributed more homogeneously. As it could be seen from the semi-logarithmic
plot, the activity distributions resemble the exponential distribution.
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Fig. 9.5 Left: The complementary cumulative distribution of the node activity a%“ and a™" over the

whole time span of outgoing (“‘out”) and incoming (“in”") edges of a node respectively. Right: The
complementary cumulative distribution of the activity of directed edges wj;; over the whole time
span of a node

9.3 Epidemic Dynamics

In the next sections we investigate on epidemic dynamics on the network of
hospitals. First, we examine the network of hospitals as a directed contact network,
considering a hospital as a single unit being in one of the susceptible, infected or
recovered states. Second, we take into account the detailed referral patterns of single
individuals, but assume the well-mixed approximation for the stochastic infection
dynamics within a single hospital.

9.3.1 Deterministic SI Model

First of all we consider a deterministic (corresponding to the worst-case scenario)
disease with no recovery or an infinite infectious period. Such an SI (susceptible-
infected) process has the kinetics

S+1— 21,
where a susceptible node becomes immediately infected upon contact (via temporal
edge) with an infectious node.

The spread of a deterministic SI process during ¢ days in a static network could
be described by the reachability or accessibility matrix

t
P, = UA”, 9.1)
=1
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where A denotes the adjacency matrix® of the static network and U denotes the
Boolean operator OR (a Boolean analog of the matrix multiplication). Elements of
this matrix are non zero if there is a path from the vertex i to the vertex j — a
connected sequence of edges, where the target vertex of the previous edge (i — J,
i # j) is the start vertex of the next one (j — k, j # k). Equation (9.1) is easy
to understand if we recall, that all possible paths up to the length ¢ are given by
> _ A" Equation (9.1) is just the Boolean version of the last relation. Analogously
the spread of a deterministic SI process on a temporal network could be described
by the temporal accessibility matrix

t

Pr= (L UA,

n=1

where U is the Boolean operator AND (a Boolean analog of the matrix addition),
1 is the identity matrix and A, is the adjacency matrix for the n-th snapshot (on
the n-th day) of the temporal network [19]. The temporal accessibility contains all
possible spreading paths of duration less or equal to ¢ of a deterministic infection
with the infinite infectious period started at all vertices. The elements of the temporal
accessibility matrix are non-zero, when there is a time respecting path from the
vertex i to the vertex j — a connected sequence of temporal edges, where the target
vertex of the previous edge (n : i — j, i # j) is the start vertex of the next one
m+t:jo>kj#kO0<t<1).

The density p(P;) (fraction of non-zero elements) of the accessibility matrix
gives a cumulative distribution F; of the number of shortest paths of duration less
or equal than r between any two nodes [19]. Thus the difference between two
successive values of the cumulative distribution F;, — F,—;, Fy = 0 gives us the
probability distribution of shortest paths of duration ¢. It is shown in Fig.9.6. As
it is clear from Fig. 9.6, the characteristic time scale of the spread in this network
is around 80 day (corresponding to the peak position). The total duration of the
spreading activity is around 100 days.

Not all paths possible in a static aggregated network are present in the temporal
one. The causal fidelity gives the fraction of paths present in the temporal network
relative to the paths in the corresponding static (aggregated) network [19]

c(r) = p(Po)/pPy), 9.2)

where P, is the accessibility in the static aggregated case with all daily network
snapshots being the same. It tells us how important the temporal resolution is
compared with the aggregated network. The dependence of the causal fidelity on
time is depicted in Fig. 9.7. As it can be clearly seen, if the time scale (e.g. infectious
period) of a dynamic process on the network is larger than approximately 300 days,
we can consider the aggregated network as a static network.

3Tts element a; = 1 if there is the edge j — i and zero otherwise.
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Fig. 9.6 Left: the density (fraction of non-zero elements) of the accessibility matrix p(7P;) of the
temporal referral network of hospitals. Right: the difference between successive values of the
accessibility density p(P,) corresponding to the distribution of shortest path durations [19]
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9.3.2 Deterministic SIR Model

So far we considered a deterministic infection without recovery. However the causal
chain of contacts of a temporal network manifests itself even stronger in the case of
a disease with a finite fixed infectious period. If vertices become immune to the
disease after infection, the following kinetics can be used

S+1—-21
I — R.
Note that we again consider the deterministic case, and thus upon contact with an
infected, a susceptible individual becomes infected for sure. For a general analysis

of deterministic SIR epidemics on temporal networks see [20]. As a quantity of
interest we consider an out-component of the vertex i — a set of vertices which
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could be reached by an epidemic with the infectious period & started from the given
node i at the initial time #y, by following all temporal edges respecting their time
order [21]. We denote the size of the out-component by C,,,(i, k, ty) which can be
also considered as an upper bound for the number of infected nodes in the case of a
stochastic disease transmission.

In Fig. 9.8 the out-components sizes averaged over initial times ¢, are presented
for all nodes in the referral network of hospitals in dependence on the infectious
period. We observe, that except for a few nodes, the majority of out-components
reaches the size of the whole network for a disease with the infectious period of
k ~ 100 days. Note that in the case of MRSA (Methicillin-resistant Staphylococcus
aureus), the carriage of the pathogens could be even longer than 100 days. Figure
9.8 could not immediately reveal how long it would take to actually reach all
the nodes in the out-component. Furthermore, we rank 185 hospitals according to
their out-component size (Fig. 9.9, left panel) for different infectious periods. We
observe a strong heterogeneity in the rank due to changes in tied values of the out-
components for small (for k ~ 3 days there is a maximum number of ranks) and
intermediate values of the infectious period. For high values of the infectious period
the rank becomes very similar for all nodes. Small values of infectious period lead to
highly fluctuating rank due to the high importance of the precise timing of outgoing
links from the given node and small sizes of the resulting out-components.

We also average the ranks over all considered infectious periods (Fig. 9.9, right
panel) and observe a strongly heterogeneous distribution — only a few nodes have a
small rank, the majority has high rank values.

To analyze the robustness of the rank we considered the entropy of the rank
distribution values for different infectious periods

"= pinp, (9.3)
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Fig. 9.9 Left: The node ranking according to the size of their out-component, averaged over initial
times #. In the case of tied values the minimal rank values are taken. Right: Node ranks averaged
over both initial time #y and infectious period k
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where p; is the probability of the out-component (C,,;),, to have rank i (Fig.9.10).
High entropy values correspond to strong heterogeneity. We observe a peculiar
behavior — the entropy oscillates with the infectious period, especially for very low
and very high values of k. It may be due to some “resonance” effect. Some values
of the infectious period lead to similar out-components corresponding to the low
entropy.

9.3.3 Network Correction Due to Community Stays

Until now we neglected the community stays and considered only direct transfers
of patients between hospitals as edges in a dynamic network. This holds under
the assumption of the complete recovery of a patient after a hospital visit. This
approach was also adopted e.g. in Ref. [10]. If patients are not pathogen-free upon
discharge from the hospital n, they could still carry pathogens when they return to
the hospital m from the community. This happens, if the time spent in the community
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is less than the infectious period of the pathogen: £ — %" < k, where subsripts of
discharge and admission times denote the corresponding hospital. Now we relax
this assumption and allow patients to carry the pathogens also in the community
(without transmission) and adjust the corresponding effective dynamic network and
quantify the impact of the pathogen carriage during community stays.

We call the network of direct patients transfers between two hospitals consid-
ered above an H-network. The H-network with additional edges due to possible
transmission events after stays in the community is a C-network. In the C-network
we include the edge between a hospital visited before the community stay and
a hospital visited afterwards, if the duration of the community stay is less than
the infectious period. Out-components Cou in the C-network are larger than the
out-components Cqy in the H-network, because the H-network is a subset of the
C-network (Fig.9.11), left panel). In Fig. 9.11, right panel, the difference between
(C'Om) t0.h and (Coyt)so.n 18 shown. We see a pronounced peak around the infectious
period of k ~ 7 days. For this infectious period, using only the H-network we
underestimate the actual out-component by 20%.

This difference could be clarified if we look on the Jaccard coefficient ® (k)
between the edges of H- and C-networks given by

|Ex N Ec|

Ok) = ——,
© |En U Ec|

9.4)

where |-| denotes the cardinality of a set (number of its elements) and Ey and E¢ are
set of edges in H- and C-networks respectively. The Jaccard coefficient quantifies
the relative overlap of two sets. It is maximal (equal to one), if two sets coincide
and is zero if two sets are disjoint. In Fig. 9.12, left panel, we observe that maximal
overlap is reached at the value of the infectious period k ~ 7 days. Additional
increase of the infectious period does not lead to higher Jaccard index. This effect
could be explained if we look on the denominator and the numerator in Eq. (9.4)
separately (Fig. 9.12, right panel). Both the total number of edges in the C-network
|Ey N Ec| and the number of edges common in both C- and H-networks |Ey U
Ec| increases with the infectious period k. However, the former increases first sub-
linearly but after the value of k ~ 7 days it increases in a super-linear manner.
The latter increases first in a super-linear way but after the value of k& ~ 7 days it
increases sub-linearly. Together this leads to the peak in the Jaccard coefficient.

So far, in the epidemic analysis we considered the network extracted from the
available dataset as a ground truth. However, we actually observe only around
50% of individuals [18] due to the market share limitations. This could lead to
the underestimation of epidemic effects, such as timescales of the spread and the
number of affected nodes. On the other hand, because we considered deterministic
epidemics, we overestimated the epidemic effects. To account for both deficiencies
— missing data and stochasticity of the transmission events, in the next section we
consider a fully stochastic, discrete-event, and agent-based computational model of
a disease with total recovery but no immunity and implement control measures.
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Fig. 9.12 The effect of community stays. Left: The relative overlap of the aggregated network is
measured by the Jaccard coefficient ®(k), Eq. (9.4) versus the infectious period k. Right: the total
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coordinates

9.3.4 Agent-Based Computational Model

In this section we introduce the computational framework for modeling the disease
spread in a network of hospitals. In a single hospital we assume a randomly mixed
situation, i.e. every patient could encounter every other patient. Information on
healthcare workers was not available and they are assumed not to contribute to
epidemic dynamics. We consider an endemic disease modeled by the standard SIS
kinetics

S+1502r1

1L s

9.5)
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Here the number of infected individuals I in a single hospital increases due to
encounters with susceptibles S at the per capita rate «. The infecteds could become
susceptible again at the rate 8. The spread of some nosocomial diseases such as
resistant pathogens reached an extent of an endemic with the prevalence for the
MRSA around 4% in hospitals [22]. To ensure the prevalence of 4%, we use the
following parameter values: @ = 0.023day ™! and 8 = 0.0027 day~! corresponding
to half a year of carriage of the pathogens before recovery.

For our computational model, we need an artificial or a surrogate population
due to the incompleteness of the data (only around 50% of the total population
is included in the data), privacy reasons and to make projection into the future.
Generation of a surrogate population is a non-trivial task, because the data is highly
spatially and temporally correlated which is usually neglected. E.g. in the study by
Donker and colleagues [10], hospital stays, separated by a community stay, were
considered uncorrelated which makes sense only for patients healthy at discharge
from a hospital. See also Ref. [23] for related issues in intra-hospital contact tracing.
To produce the surrogate population and to keep the correlations present in the
original dataset, we use the following bootstrapping procedure.

For every surrogate patient, we randomly choose a patient from the original
dataset considering only the middle year [T, 27] (out of three) for bootstrapping,
where 7' = 365 days as counted from the beginning of the dataset (the 1st of January
2009). We randomly from a uniform distribution choose the day ¢ € (7', 27] of the
first appearance of the surrogate patient within the interval (7', 27| and replicate
individual referral history periodically, n times.* To account for vital (birth/death)
dynamics we need M — the total number of patients staying in hospitals during the
year — for every annual period [(k — 1)T,kT], k < n. We choose randomly uM
patients at a random time point within the current k-th time interval ((k — 1)T, kT],
exchange their IDs by new ones and reset their infection status to susceptible for the
next hospital stay in the future. Here . = 0.25 is the turnover rate of the population
(disappearance and appearance of patients) in the censored period of time.

The simulation was implemented using a modified stochastic Gillespie algo-
rithm [24] for epidemic dynamics within a hospital, combined together with
explicitly scheduled patient transfer events. All relevant events were implemented as
a priority queue data structure [25]. The health status of all the patients in the system
was tracked. We let the system equilibrate to a stationary level before starting the
epidemic simulation.

Using the above computational model we can easily access the effect of different
intervention measures based on the topological and temporal properties of the
patient referral network. We choose two exemplary intervention scenarios. In both
of them the resources for random screening of 50% of incoming patients and
subsequent decolonization (this reduces the rest recovery time 3-fold) and isolation
were allocated to the selected 10% of hospitals with the highest ranks. The ranking

4Since hospital stays could fall outside the interval (T, 2T], we choose to cut the stays to fit into
the interval.



212 V. Belik et al.

0.05 - - . .
3 cz fit |
004 h |
2 — K, fit |
o i |
S 0.03] NN er wn"" mﬂ L
® 'WWW W
=

0.02

2500 3000 3500 4000 4500 5000
Time

Fig. 9.13 Impact of interventions. Results of the numerical simulations of an agent based model,
Eqg. (9.5) with interventions — allocation of resources for screening and subsequent decontamination
and isolation to 10% of hospitals (prioritized according to the out-component (C,,) s« Of nodes
(blue) and according to the aggregated in-degree k;, of a node (red)). For the fit an exponential
function Eq.(9.6) was chosen. The in-degree ranking seems to be more efficient to reduce the
prevalence than the time-averaged out-component ranking

was performed (i) according to the deterministic out-component (C,,),, of a node
and (i1) according to the in-degree of a node in the aggregated network. In Fig. 9.13
the time course of the prevalence, averaged over all hospitals, after intervention were
applied, is presented for both scenarios. The comparison shows, that the in-degree
ranking is more appropriate for the prevalence reduction than the out-component.
The deviation in the final prevalences is up to 20% £ 10%. As an estimate for the
final prevalence y, we took the limit + — oo of the fit function to the prevalence
time series y(¢) of the form

y=yo— (7" —yo) e, (9.6)

where 7* = 0.4 is the baseline prevalence. This curve describes an abrupt
prevalence decrease after intervention, afterwards slowly approaching the endemic
prevalence level. We obtain for the ranking by the out-component y, = 0.30 and for
the in-degree yp = 0.24. Note also that allocation of limited resources only to some
hospitals usually leads to reduction of the prevalence but not to (almost) eradication
of the disease, which could be achieved if the intervention measures were applied
at all the hospitals. This supports the hypothesis, that in the network of hospitals
the prevalence reduction is achieved immediately in the hospitals where control
measures are implemented (high in-degree selects hospitals with a lot of incoming
patients) and not due to the indirect effects of the reduction of disease transmission
to other hospitals (which corresponds to the high out-component).
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9.4 Conclusion

We have investigated patient referral patterns in a large federal state in Germany.
We extracted the underlying network of hospitals and investigated its properties
with respect to pathogen spread. For the worst case scenario of a highly contagious
pathogen with and without recovery we examined the time scales and, in the
presence of recovery, sizes of an outbreak dependent on the infectious period. We
investigated the role of patients returning to hospitals but still carrying the pathogen
acquired during previous hospital visits. We showed that this results in a deviation
(underestimate) of the size of the out-components (or outbreak size) up to 20%
for the values of the infectious period of one week without patient returns. By
deploying an agent- and discrete event-based computational model of an endemic
disease (MRSA), we assessed the impact of intervention strategies based on the
out-component size and the in-degree resource allocation. Our analysis showed the
advantage of the in-degree based allocation.

There is still the need for generic models of contacts patterns, to account for
the missing data as well as to project the results into the future. Recently some
additional epidemic control strategies based on the temporal aspects of the network
were proposed as a promising direction for the future research [26, 27]. Prioritization
scheme according to the risk of disease introduction should be used based on novel
network distance measures [28, 29]. Our approach helps to understand the spread of
infections in a network of hospitals and could be used to plan preventive measures
as well as to design informed clinical studies.
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